博客
关于我
【线性代数】第一章——行列式
阅读量:159 次
发布时间:2019-02-28

本文共 1026 字,大约阅读时间需要 3 分钟。

行列式入门

本章体系

行列式是线性代数中的一个核心概念,广泛应用于解决线性方程组、矩阵的逆等问题。本章将从基础概念开始,逐步深入到行列式的计算方法和应用场景。

提公因式与两行成比例

提公因式是矩阵行列式计算中的常用技巧,针对一行或一列进行公因式提取。两行成比例意味着两行的元素成比例关系,这种情况下行列式的值为零。

易搞错的概念

逆序数

逆序数是行列式计算中的一个概念,类似于排列的逆序数。虽然可以用于计算行列式,但由于其计算复杂性,实际应用中较少使用。

余子式与代数余子式

余子式是行列式计算中的重要工具,代数余子式则是其乘以(-1)^(i+j)后的结果。通过代数余子式,可以方便地展开行列式的计算。

计算公式

行列式的计算涉及多种公式,其中三角形公式是最常用的一种。需要注意的是,三角形公式适用于矩阵具有单一非零行列式的情况。

三角形公式

对于以下矩阵,计算行列式:|a b c||d e f||g h i|

行列式的值为a(ei - fh) - b(di - fg) + c(dh - eg)。

例题一:0的位置

对于如下的矩阵,计算其行列式:|0 1 2||3 0 4||5 6 0|

行列式值为0。

例题二:爪型行列式

爪型行列式是一种特殊的三角行列式,其计算方法类似于三角形公式。

范德蒙

范德蒙公式用于计算n×n矩阵的行列式,通过展开成(n-1)×(n-1)行列式的形式进行计算。

常用公式

行列式的计算涉及多个公式,以下是一些常用的公式示例。

克拉默法则

克拉默法则是一种求解线性方程组的方法,通过行列式和代数余子式来计算变量的值。

题型总结

三对角行列式

三对角行列式可以通过递推公式或数学归纳法进行计算。

数学归纳法

  • 当n=1时,行列式值为a11。
  • 假设n=k时,行列式值为ak1 * ... * a1k。
  • 当n=k+1时,行列式值为ak+11 * ... * a1k。
  • 计算示例

    对于如下的三对角矩阵,计算其行列式:|a1 0 0 ... 0||0 a2 0 ... 0||... ... ... ... ...||0 0 ... ak ...||... ... ... ... ...||... ... ... ... ...||... ... ... ak+1 ...|

    行列式值为ak+11 * ... * a1k。

    结论

    通过本章的学习,我们掌握了行列式的基本概念、计算方法及其应用。理解这些概念对于解决实际问题至关重要。

    转载地址:http://hnmc.baihongyu.com/

    你可能感兴趣的文章
    nacos配置自动刷新源码解析
    查看>>
    Nacos集群搭建
    查看>>
    nacos集群搭建
    查看>>
    Navicat for MySQL 查看BLOB字段内容
    查看>>
    Neo4j电影关系图Cypher
    查看>>
    Neo4j的安装与使用
    查看>>
    Neo4j(2):环境搭建
    查看>>
    Neo私链
    查看>>
    nessus快速安装使用指南(非常详细)零基础入门到精通,收藏这一篇就够了
    查看>>
    Nessus漏洞扫描教程之配置Nessus
    查看>>
    Nest.js 6.0.0 正式版发布,基于 TypeScript 的 Node.js 框架
    查看>>
    NetApp凭借领先的混合云数据与服务把握数字化转型机遇
    查看>>
    NetBeans IDE8.0需要JDK1.7及以上版本
    查看>>
    netcat的端口转发功能的实现
    查看>>
    netfilter应用场景
    查看>>
    netlink2.6.32内核实现源码
    查看>>
    Netpas:不一样的SD-WAN+ 保障网络通讯品质
    查看>>
    NetScaler的常用配置
    查看>>
    netsh advfirewall
    查看>>
    NETSH WINSOCK RESET这条命令的含义和作用?
    查看>>